基本信息:
張明亮
干細(xì)胞與神經(jīng)發(fā)育/再生研究組
電話:021-54562516
郵箱:[email protected]
研究方向:
課題組研究神經(jīng)系統(tǒng)的修復(fù)與再生,聚焦于少突膠質(zhì)祖細(xì)胞(OPC)發(fā)育與髓鞘生成/再生的調(diào)控機(jī)制研究和技術(shù)研發(fā)。利用干細(xì)胞生物學(xué)、化學(xué)生物學(xué)等手段,通過高通量化學(xué)小分子篩選,開發(fā)促進(jìn)OPC激活和髓鞘生成的化學(xué)小分子藥物,揭示調(diào)控髓鞘生成/再生的關(guān)鍵信號通路,闡明髓鞘形成對神經(jīng)元發(fā)育與損傷修復(fù)的作用,探索通過促進(jìn)髓鞘形成改善認(rèn)知功能障礙和衰老的新方法,為利用化學(xué)手段調(diào)控髓鞘生成提供新技術(shù),為髓鞘/神經(jīng)損傷的內(nèi)源性修復(fù)提供新策略。原創(chuàng)性成果發(fā)表在Cell Stem Cell, Cell Rep., Nucleic Acids Res., J. Mol. Cell Biol.等期刊。研究工作得到科技部干細(xì)胞重點(diǎn)研發(fā)專項(xiàng),國家自然科學(xué)基金面上項(xiàng)目,上海市科技創(chuàng)新重點(diǎn)基礎(chǔ)研究項(xiàng)目,上海市科委項(xiàng)目,上海市教委項(xiàng)目等基金支持。
個人簡歷:
張明亮,研究員,博士生導(dǎo)師,上海市東方英才,上海市“浦江人才”,上海市東方學(xué)者特聘教授。2002年畢業(yè)于廈門大學(xué),獲得學(xué)士學(xué)位;2009年畢業(yè)于中國科學(xué)院生物化學(xué)與細(xì)胞生物學(xué)研究所,獲得博士學(xué)位;2010-2016年分別在美國斯克里普斯研究所(Scripps Research Institute)和美國加州大學(xué)舊金山分校格拉德斯通研究所(The J. David Gladstone Institutes)從事博士后研究;2016年起加入上海交通大學(xué)醫(yī)學(xué)院組織胚胎學(xué)與遺傳發(fā)育學(xué)系,任支部書記,常務(wù)副主任。現(xiàn)任中國神經(jīng)生物學(xué)會神經(jīng)膠質(zhì)分會委員、中國細(xì)胞生物學(xué)會青年工作委員會委員、中國醫(yī)師協(xié)會基礎(chǔ)研究與臨床轉(zhuǎn)化專業(yè)委員會(學(xué)組)委員、中國醫(yī)藥生物技術(shù)協(xié)會神經(jīng)修復(fù)在再生分會委員、中國食品藥品企業(yè)質(zhì)量安全促進(jìn)會細(xì)胞醫(yī)藥分會專家常委、上海市生殖醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室特聘研究員、上海市“細(xì)胞穩(wěn)態(tài)調(diào)控與疾病” 前沿科學(xué)研究基地委員、細(xì)胞分化與凋亡教育部重點(diǎn)實(shí)驗(yàn)室研究員。課題組聚焦于利用化學(xué)手段高效特異的誘導(dǎo)產(chǎn)生神經(jīng)系統(tǒng)的干/祖細(xì)胞和終末分化細(xì)胞,并將化學(xué)策略應(yīng)用于體內(nèi),實(shí)現(xiàn)內(nèi)源細(xì)胞的原位再生;研發(fā)針對神經(jīng)系統(tǒng)疾病的細(xì)胞/化學(xué)藥,推動神經(jīng)損傷修復(fù)與再生。
科研項(xiàng)目:
1. 科技部 干細(xì)胞重點(diǎn)研發(fā)專項(xiàng)
2. 國家自然科學(xué)基金委 面上項(xiàng)目
3. 上海市科學(xué)技術(shù)委員會 科技創(chuàng)新重點(diǎn)基礎(chǔ)研究項(xiàng)目
4. 上海市科學(xué)技術(shù)委員會 “浦江人才計劃-A類”
論文與專著:
1. Li Yawen, et al. Combination Therapy Dramatically Promotes Remyelination. J Mol Cell Biol. 2025, DOI: 10.1093/jmcb/mjaf005.
2. Yang Yudong, et al. Small-molecule activators specific to adenine base editors through blocking the canonical TGF-β pathway. Nucleic Acids Res. 2022 Sep 23;50(17):9632-9646.
3. Wang Jia, et al. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat Biomed Eng. 2022 Apr;6(4):403-420.
4. Zhang GuanYu, et al. Chemical approach to generating long-term self-renewing pMN progenitors from human embryonic stem cells. J Mol Cell Biol. 2022 Feb 24;14(1):mjab076.
5. Cheng Zhouli, et al. The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to Promote Reprogramming. Cell Rep. 2020 Jul 14;32(2):107877.
6. Sun Pingxin, et al. Maintenance of Primary Hepatocyte Functions In Vitro by Inhibiting Mechanical Tension-Induced YAP Activation. Cell Rep. 2019 Dec 3;29(10):3212-3222.e4.
7. Liu Chang, et al. Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol. 2019 Jun 1;11(6):489-495.
8. Zhang Mingliang, et al. Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell. 2016 May 5;18(5):653-67.
9. Cao Nan, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016 Jun 3;352(6290):1216-20.
10. Zhu Saiyong, et al. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun. 2016 Jan 6;7:10080.
11. Xie Fei, et al. Reversible Immortalization Enables Seamless Transdifferentiation of Primary Fibroblasts into Other Lineage Cells. Stem Cells Dev. 2016 Aug 15;25(16):1243-8.
12. Zhu Saiyong, et al. Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Res. 2014 Jan;24(1):126-9.
13. Xu Tao, et al. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors. Stem Cells Transl Med. 2013 May;2(5):355-61.
14. Tong Xiajing, et al. Est1 protects telomeres and inhibits subtelomeric y'-element recombination. Mol Cell Biol. 2011 Mar;31(6):1263-74.
15. Zhang Mingliang, et al. Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat Struct Mol Biol. 2010 Feb;17(2):202-9.
16. Liao Xinhua, et al. Characterization of recombinant Saccharomyces cerevisiae telomerase core enzyme purified from yeast. Biochem J. 2005 Aug 15;390(Pt 1):169-76.
17. Zhang Mingliang, et al. Chemical Approaches to Controlling Cell Fate. in Principles of Developmental Genetics, 2nd Edition, Moody S., 2014, Academic Press. pp59-76.